Genomic characterization, high-density mapping and anchoring of DArT markers to the reference genome of Eucalyptus
نویسندگان
چکیده
Background Genetic linkage maps have been essential tools to examine the inheritance of qualitative and quantitative traits, to carry out comparative mapping and to provide markers for molecular breeding applications. Linkage maps for species of Eucalyptus have been reported for several pedigrees using different molecular marker technologies [1]. However improved marker density, throughput and transferability across species are necessary to increase resolution of current maps for a variety of genomic applications. We report the development of a high density linkage map for Eucalyptus based on microsatellites and DArT (Diversity Arrays Technology) markers generated by a standardized genotyping microarray [2]. DNA probes that constitute the DArT microarray were sequenced and positioned on the reference Eucalyptus genome providing information about their sequence content, their distribution relative to annotated genes as well as the relationship between physical and recombination distance in the Eucalyptus genome.
منابع مشابه
Genomic Characterization of DArT Markers Based on High-Density Linkage Analysis and Physical Mapping to the Eucalyptus Genome
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marke...
متن کاملHow many genes might underlie QTLs for growth and wood quality traits in Eucalyptus?
Background QTL mapping is an unbiased approach where the phenotype reveals the location of regulatory genes or genomic regions affecting the trait of interest. The development of transferable molecular markers and the increased use of multiple pedigrees for QTL mapping have allowed comparative analysis of QTLs across independent studies thus providing validation data. Such QTL positional inform...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملDiversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus
Background Wider genome coverage and higher throughput genotyping methods have become increasingly important to meet the resolution and speed necessary for a variety of applications in genomics and molecular breeding of forest trees. Developed more than 10 years ago [1], the Diversity Arrays Technology (DArT) has experienced an increasing interest worldwide for it has efficiently satisfied the ...
متن کاملA new set of 182 microsatellites for Eucalyptus: characterization and mapping in a four-species consensus linkage map
Background Eucalyptus is the most widely planted hardwood crop in the tropical and subtropical world. Plantations of Eucalyptus species supply high-quality wood for industrial applications and are important sources of carbon neutral renewable energy in Brazil. E. grandis and E. urophylla and their hybrids are the most widely planted species in fast growing commercial forests in Brazil. E. globu...
متن کامل